BOHR OPERATOR ON OPERATOR VALUED POLYANALYTIC FUNCTIONS ON SIMPLY CONNECTED DOMAINS

نویسندگان

چکیده

Abstract In this article, we study the Bohr operator for operator-valued subordination class $S(f)$ consisting of holomorphic functions subordinate to f in unit disk $\mathbb {D}:=\{z \in \mathbb {C}: |z|<1\}$ , where $f:\mathbb {D} \rightarrow \mathcal {B}(\mathcal {H})$ is and $\mathcal algebra bounded linear operators on a complex Hilbert space {H}$ . We establish several results, which can be viewed as analogs couple interesting results from scalar-valued settings. also obtain von Neumann-type inequality analytic self-mappings {D}$ fix origin. Furthermore, extensively inequalities polyanalytic certain proper simply connected domains {C}$ radius form $F(z)= \sum _{l=0}^{p-1} \overline {z}^l \, f_{l}(z) $ $f_{0}$ an convex biholomorphic function, starlike function

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Operator-valued tensors on manifolds

‎In this paper we try to extend geometric concepts in the context of operator valued tensors‎. ‎To this end‎, ‎we aim to replace the field of scalars $ mathbb{R} $ by self-adjoint elements of a commutative $ C^star $-algebra‎, ‎and reach an appropriate generalization of geometrical concepts on manifolds‎. ‎First‎, ‎we put forward the concept of operator-valued tensors and extend semi-Riemannian...

متن کامل

Operator-valued bases on Hilbert spaces

In this paper we develop a natural generalization of Schauder basis theory, we term operator-valued basis or simply ov-basis theory, using operator-algebraic methods. We prove several results for ov-basis concerning duality, orthogonality, biorthogonality and minimality. We prove that the operators of a dual ov-basis are continuous. We also dene the concepts of Bessel, Hilbert ov-basis and obta...

متن کامل

Non-commutative holomorphic functions on operator domains.

We characterize functions of d-tuples of bounded operators on a Hilbert space that are uniformly approximable by free polynomials on balanced open sets.

متن کامل

operator-valued tensors on manifolds

‎in this paper we try to extend geometric concepts in the context of operator valued tensors‎. ‎to this end‎, ‎we aim to replace the field of scalars $ mathbb{r} $ by self-adjoint elements of a commutative $ c^star $-algebra‎, ‎and reach an appropriate generalization of geometrical concepts on manifolds‎. ‎first‎, ‎we put forward the concept of operator-valued tensors and extend semi-riemannian...

متن کامل

Data-Sparse Approximation to Operator-Valued Functions of Elliptic Operator

In previous papers the arithmetic of hierarchical matrices has been described, which allows to compute the inverse, for instance, of finite element stiffness matrices discretising an elliptic operator L. The required computing time is up to logarithmic factors linear in the dimension of the matrix. In particular, this technique can be used for the computation of the discrete analogue of a resol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Canadian mathematical bulletin

سال: 2023

ISSN: ['1496-4287', '0008-4395']

DOI: https://doi.org/10.4153/s0008439523000541